
Using Traceability to Enhance Mutation Analysis

Dedicated to Model Transformation

Abstract—Techniques initially used for programs require mod-
ifications to be properly used with to model transformation
characteristics. Mutation analysis is one of these techniques.
It aims to qualify a test data set by analyzing the execution
results of intentionally faulty program versions. If the degree
of qualification is not satisfactory, the test data set has to
be improved. This step is currently relatively fastidious and
manually performed.

In this paper, we propose an approach based on traceability
mechanisms to ease the test model set improvement in the
mutation analysis process. A benchmark shows that the part of
the input model to change is automatically and quickly identified.
A new model is then created in order to raise the quality of the
test data set.

Index Terms—test; model transformation; mutation analysis;
traceability

I. INTRODUCTION

When a program written in C has not the expected behavior

or is erroneous, the programmers look for the faults in their

program. Indeed, they trust in the compiler. This latter has

been largely tested because a fault in a compiler may spread

over lot of programs since a compiler is used many times to

justify the efforts relative to its development. Similarly, model

transformations that form the skeleton of model based system

development and so enable to generate code from high level

model specifications have to be largely tested and trustworthy.

Model transformations are usually considered as programs

and may be tested as so. However, they rely on metamodels

and manipulate models as input and output data. Using such

data structures implies specific operations that do not occur

in traditional programs such as navigating the input/output

metamodels or filtering model elements in collections. Thus,

classical but also specific faults may appear in model trans-

formations. For instance, the programmer may have navigated

a wrong association between two classes, thus manipulating

incorrect class instances of the expected type. The emergence

of the object paradigm has implied an evolution in the verifica-

tion techniques [1]. Similarly, verification techniques have to

be adapted to model transformation specificity to make profit

of the model paradigm. New issues relative to the generation,

the selection and the qualification of input model data are met.

There exist several test techniques. In this paper, we will

only focus on mutation analysis. Mutation analysis relies on

the following assumption: if a given test data set can reveal

the fault in voluntarily faulty programs, then this set is able

to detect involuntary faults. Mutation analysis [2] aims to

qualify a test data set for detecting faults in a program under

test. For this purpose, faulty versions of this program (called

mutants) are systematically created by injecting one single

fault by version. The efficiency of a given test data set to reveal

the faults in these faulty programs is then evaluated. If the

proportion of detected faulty programs [3] is considered too

low, new and adapted data tests have to be introduced [4]. To

apprehend the model transformation specificity, the mutation

analysis process may be adapted. For each mutant, one fault

is injected in a transformation rule [5]. The quality of the test

model set is then evaluated and possibly enhanced.

Only the test data improvement step of the mutation analysis

process is apprehended in this paper. The creation of new test

models relies on a deep analysis of the existing test models

and the execution of the undetected faulty transformations.

Currently, this work is manually performed and fastidious; the

tester deals with a large amount of information. In this paper,

we propose an approach to fully automate the information

collection. This automation relies on traceability mechanisms

enhanced with mutation analysis characteristics. An algorithm

is proposed to effectively collect the required and sufficient

information. Then, the collected information is used to create

new test models. Our enhanced traceability mechanisms helps

to reduce the testers intervention to particular steps where their

expertises are essential.

This paper is composed as follows. Section II presents mu-

tation analysis to qualify test data set in model transformation

testing. Section III describes our metamodels, foundations of

our approach to improve test data set. Section IV validates our

approach with transformations from the Gaspard framework.

Section V introduces works related to the qualification and

the improvement of the test data set. Section VI draws some

conclusions and introduces future works.

2010 Workshop on Model-Driven Engineering, Verification, and Validation

978-0-7695-4384-0/10 $26.00 © 2010 IEEE

DOI 10.1109/MoDeVVa.2010.15

1

Vincent Aranega
LIFL - UMR CNRS 8022, INRIA

University of Lille 1
Lille, France

Email: vincent.aranega@lifl.fr

Jean-Marie Mottu
LINA - UMR CNRS 6241

University of Nantes
Nantes, France

Email: jean-marie.mottu@univ-nantes.fr

Anne Etien, Jean-Luc Dekeyser
LIFL - UMR CNRS 8022, INRIA

University of Lille 1
Lille, France

Email: {anne.etien,
jean-luc.dekeyser}@lifl.fr

Fig. 1. Mutation analysis process

II. MUTATION ANALYSIS TO QUALIFY TEST DATA SET

Assuring that a program is undoubtedly fault free is a

difficult task requiring a lot of time and expertise. However,

qualifying a test data set (i.e. estimate its pertinence and its

effectiveness) is easier. If this estimation is considered too low,

the test set must be improved. In the following subsections, we

briefly describe the mutation analysis process [2], one way to

qualify a given test data set. We then explain why that software

testing method has to be adapted to the model paradigm.

In the following subsections, we briefly describe the muta-

tion analysis process [2], one way to qualify a given test data

set. We then explain why program testing approaches need to

be adapted to the model paradigm.

A. Mutation Analysis Process

Preliminary to the mutation analysis process, variants (P1,

P2,. . . , Pk) (called mutants) of the program P under test have

to be created by injecting one atomic change. In practice, each

change corresponds to the application of a single mutation

operator on P . Then, P and all the mutants are successively

executed with each test data of the set to be qualified. If the

results returned by P differ from anyway from those returned

by some Pi, these mutants are said to be killed. The faults

introduced in those Pi were indeed highlighted by the test data.

In the other case, if P returns the same results as some Pj ,

they are said to be live mutants. A mutant may be alive for two

reasons: (1) P and Pj are actually equivalent programs and no

test data will distinguish them (e.g. the fault has been inserted

in dead code); or (2) the test data set is not sensitive enough

to highlight that fault. In that latter case, the test data set has

to be improved until it kills each mutant or it only leaves live

mutants that are equivalent to P [2]. The mutation analysis

process is stopped when the test data set is qualified i.e. when

the ratio of killed mutants, also called the mutation score,

reached 100 % or when it rises above a threshold beforehand

fixed. Figure 1 sketches the mutation analysis process.

B. A largely manual process

Part of the mutation analysis process is automatic but work

remains for the tester.

• The mutant creation can be automated. However, the

operators are specific to the language used in the program

to test. For each new language a new definition and

implementation of the mutation operators have to be

performed.

• The execution of P and its associated mutants with the test

data is obviously automated as well as the comparison of

the results.

• The analysis of a live mutant is manual up to now. Indeed,

on the one hand, the automatic identification of equivalent

mutants is an undecidable problem [2], [6]. On the other

hand, the test data set improvement can be difficult.

• The improvement of the test data set is manually per-

formed. Indeed, the unrevealed injected fault should be

analyzed both statically and dynamically in order to

create a new test data. Moreover, the new test data

produced has to imply a behavior that is different from

the original program, for at least one mutant.

The purpose of this paper is to help in the automation of the

test data set improvement in case where test data are models

and program is a model transformation. But us let explore

in the next subsection the specificity of model transformation

testing.

C. Adaptation to Model Transformation

Model transformations can be considered programs and

therefore techniques previously explained can be used. How-

ever, the complexity and the specificity induced by the data

structures (i.e. models conform to their metamodels) ma-

nipulated by the transformations imply modifications in the

mutation analysis process described in the subsection II-A.

Each step of the mutation analysis process has to be adapted

to model transformations. [7] deals with the generation of

test models. In [5], dedicated mutation operators have been

designed independently from any transformation language.

They are based on three abstract operations linked to the basic

treatments of a model transformation: the navigation of the

models through the relations between the classes, the filtering

of object collections, and the creation and the modification of

the model elements. The execution of the transformation under

test T and its mutants T1, T2, . . . , Tk differs from the execution

of a program but remains common. The comparison of the

output model produced by T and those produced by the Ti can

be performed using adequate tools such as EMFCompare [8].

If a difference is raised by EMFCompare, the mutant is

considered killed, otherwise new test models are built to kill

the (non equivalent) live mutants.

The remainder of this paper focuses on this last part of the

mutation analysis process where new test models are created

III. TRACEABILITY, A MEANS TO AUTOMATICALLY

COLLECT INFORMATION

Considering that creating a new test model from another

one is easier than from scratch, the issue of the test set

improvement raises three questions:

• Among all the existing couples (test model, mutant),

which ones are relevant to be studied?

2

• What should the output model look like if the mutant was

killed? i.e. what could be the difference we want to make

appear in the output model?

• How to modify the (input) test model to produce the

expected output model and thus kill the mutant?

To help the tester to answer these questions, we provide a

method based on a traceability mechanism.

A. Traceability for Model Transformation

According to the IEEE Glossary, Traceability allows one to

establish degrees of relationship between products of a devel-

opment process, especially products bound by a predecessor-

successor or master-subordinate relationship [9]. Regarding

MDE and more specifically model transformations, the trace

links elements of different models by specifying which ones

are useful to generate others.

Our traceability approach [10], [11] relies on two metamod-

els: a local trace metamodel and a global trace metamodel. The

first refers to the trace for model to model transformations

whereas the second refers to the trace for transformation

chains. In this paper, we focus on model to model trans-

formation testing and do not consider transformation chain.

Therefore, only the local trace metamodel is presented (cf.

Figure 2).

Fig. 2. Local Trace Metamodel

The local trace metamodel is built around two main con-

cepts: Link and ElementRef expressing that one or more source

elements are possibly bound to target elements. Furthermore,

for each link, the transformation rule producing it is traced us-

ing the RuleRef concept. Finally, for implementation facilities,

an ElementRef has a reference to the real object in the source

or target model. As our environment is based on the Eclipse

platform, models are implemented with EMF, the reference

named EObject is an import of the ECore metamodel. The

local trace metamodel and local trace models are independent

of any transformation language. However, the generation of the

local trace model strongly depends on the used transformation

language.

For each Link instance, the involved elements of the input

or output models are clearly identified thanks to the ClassRef

directly referring the EObject. A continuity between the trace-

ability and the transformation worlds is ensured. Furthermore,

the transformation rule that has created a link is associated to

it via the ruleRef reference. Each time a rule is called a unique

new Link is created. Thus, from a rule, the localTraceModel

enables the tester to identify, for each call (i.e. for each

associated link), two sets of elements: those of the input model

and those of the output model created by the rule. In the case of

Fig. 3. Mutation Matrix Metamodel

a faulty rule, these sets respectively correspond to the elements

to modify and the elements that may be different if the mutant

is killed.

B. Mutation Matrix Metamodel

Mutation analysis results and traces information are com-

bined to automate a part of the test data set improvement

process. Mutation analysis results are usually gathered in a

matrix. Each cell indicates if an input model has killed a given

mutant or not. A mutant is alive if none of its corresponding

cells indicate a killing. From information contained in all the

cells concerning a mutant, it can be deduced if it is alive or

not.

Links between mutants, test models and their traces are

managed using a dedicated matrix at a model level. The

advantages are multiple. A cell corresponds to an abstraction

of the execution of a mutant Ti for the test model Dk. By

associating its trace to each cell, the matrix model becomes

a pivot model. In this way a continuity is ensured between

the traces, the test models and the information gathered in

the mutation matrix. The navigation is eased between the

different worlds. Moreover, the mutation matrix benefits from

tools dedicated to models. Thus, the mutation matrix model

is automatically produced from the results of the comparisons

between the model produced by the original transformation

and the one generated by Ti.

The mutation matrix metamodel, presented Figure 3, is

organized around three main concepts:

• Mutant which refers to mutants created from the orig-

inal transformation. The mutants have one rule (modi-

fiedRule attribute, it is a string to remain independent

from any transformation language) modified thanks to

one mutation operator (mutationOp attribute).

• Model which refers to input test data.

• Cell which corresponds to an abstraction of the couple

(mutant Ti, test model Dk). Its value (false or true)

of the property isAlive specifies the state (killed or live

respectively) of the Mutant Ti regarding to the specific

Model Dk. The LocalTraceModel corresponding to the

execution of Ti with Dk is thus associated to the Cell.

The matrix model is generated during the mutation analysis

process. It is the foundation of the test model improvement

process presented in the next subsection.

3

C. Data Improvement Process Assisted by Traces

The data improvement process is composed of three steps:

• step 1: identifying a live mutant

• step 2: finding an appropriate existing test model

• step 3: improving this test model in order it kills the

mutant

A mutant is alive if no test model has killed it. Live mutants

can thus be easily and automatically identified by exploring

the matrix cells. Identifying a good candidate, among the

test models, to kill a given live mutant is more difficult.

Our approach relies on the principle that test models for

which the faulty rule of the mutant has been called are

better candidates. Indeed, the conditions to apply this rule

were satisfied. Our traceability mechanism helps us to identify

these models and for each of them to highlight the elements

impacted by the faulty rule. The algorithm 1 implements this

part of the improvement process (i.e. corresponding to step 2

and gathering information to perform step 3).

Algorithm 1 Information Recovering for a Live Mutant

1: trace← null

2: rule← null

3: modifiedRule← mutant.modifiedRule

4: modelsHandled← ∅
5: eltsHandledSrc← ∅
6: eltsHandledDest← ∅
7: for each mutant.cells do

8: trace← cell.trace

9: rule← trace.findRule(modifiedRule)
10: if rule 6= null then

11: modelsHandled + = cell.model

12: tempEltsSrc← ∅
13: tempEltsDest← ∅
14: for each rule.links do

15: tempEltsSrc + = link.srcElements

16: tempEltsDest + = link.destElements

17: end for

18: eltsHandledSrc + = tempEltsSrc

19: eltsHandledDest + = tempEltsDest

20: end if

21: end for

The first five lines correspond to the initialization of the

different variables:

• the trace variable stores the trace associated to the

execution of the mutant Ti for a given test model Dk

• rule refers to a RuleRef in the trace model

• modifiedRule is a String initialized with the name of

the modified rule associated to Ti

• the modelsHandled variable is a model list containing

the test models for which the execution of the mutant

requires the modified rule

• the eltsHandledSrc and eltsHandledDest variables

are similar to the previous one. They contain lists of input

(respectively output) elements (one list by test model) that

are involved in the application of the faulty rule.

The algorithm then scans each cell relative to the studied

mutant. The trace corresponding to the execution of Ti on

one input model Dk is stored (line 8). The trace model is

navigated to check if the modified rule has been called during

the corresponding transformation. This search is performed

through the findRule method (not detailed in the algorithm).

This method explores the RulesContainer of the LocalTrace-

Model associated to the cell until it finds the RuleRef instance

whose name corresponds to the one of the faulty rule (i.e. the

assigned value of the modifiedRule property of the Mutant).

This method returns a RuleRef instance or null if the rule

doesn’t appear in the trace. The result is stored in the rule

variable (line 9). If the content of the rule variable is null,

the analysis stops here for this cell and goes on with the

next one. In the other hand, the model Dk is stored in the

modelHandled (line 10). For each link associated to the rule,

the list of the input model elements (srcElements) is stored

in the eltsHandledSrc variable using the temporary variable

tempEltsSrc. The management of the output model elements

is performed from the same way. (line 12 to 17).

For a given live mutant Ti, this algorithm provides: (1)

some test models (modelsHandled) (2) their elements (elts-

Handled) involved in the application of the faulty rule and

(3) the elements of the output models created by this rule.

If the content of the modelHandled variable is empty, the

faulty rule has never been called, whatever the test model. A

new model has to be created, possibly from scratch, containing

elements satisfying the application of the faulty rule. On the

other hand, if the modelHandled variable is not empty, the

faulty rule has been called at least once. However, since the

mutant is alive, this rule has never produced a result different

from the one generated by the original transformation T . A

new test model is created by adapting the considered test

model.

Our approach helps the tester to drastically reduces the

field of the required analysis to create a new model. For a

given live mutant, the set of models and the set of the model

elements is reduced to only those impacted by the application

of the faulty rule. Even if a part of the improvement process

remains manually performed, our approach clearly eases the

tester work.

IV. EXAMPLE

This section aims to validate our approach on a real case

study; the transformation from the UML metamodel enhanced

with the MARTE profile to the MARTE metamodel. The

MARTE profile is the OMG standard for the modeling and the

analysis of real time embedded systems [12]. Both metamodels

involved in the transformation are composed of around 200

metaclasses. This transformation is written in QVTO and

corresponds to around 1500 lines of code. It is part of a

larger framework Gaspard for the co-design of embedded

system [13].

4

Fig. 4. Mutate port2flowPort rule excerpt

A. Application of our Approach

Due to the size of the involved metamodels and the large

scope of the transformation, the amount of work is relatively

huge. We thus decided to concentrate the faults injected

in a limited part of the transformation. The mutants have

been manually created. Indeed, even if the mutation operators

are generic, their implementation and the automation of the

mutation creation must be adapted for each transformation

language. Such works have not yet been done for QVTO stan-

dard language. 35 mutants corresponding to the 10 mutation

operators and initially 32 test models have been defined and

the mutation matrix has been set up. An automatic exploration

of the full matrix enables the tester to identify the killed

mutants and the live ones. The remainder of the algorithm

is applied in order to create a new test model that will kill

this mutant.

Thanks to the mutation matrix, the rule port2flowPort of this

mutant where a fault has been injected is easily identified. The

original transformation sets the value of the produced port to

inout, whereas the mutant sets it to out. In the Figure 4,
the original piece of code is marked by the orig flag and the

modified one by the mutant flag.

The algorithm 1 enables the identification of the 5 test mod-

els, for which the port2flowPort rule has been executed, as well

as, for each one of them, their elements (the eltsHandledSrc

set) involved in this rule. Furthermore, the associated elements

created in the output model are also highlighted and gathered

in the eltsHandledDest set. These results are presented in

Table I. Each set being composed of only one element, their

representations have been omitted in the table in order not to

reduce the readability. Each line corresponds to a rule call.

Based on these information, the remainder of the improve-

ment test set process is manually performed with one of the

identified model, for example, the simple reshape.uml test

model. The direction properties of the p1 and p2 Flowport

are respectively set to in and out. The same occurs for

the model produced by the original transformation from these

input models. However, a static analysis of the faulty rule leads

to the following observation: the original transformation may

produce a FlowPort with a direction set to inout but not the

studied mutant. Thus, to kill this mutant, the tester must create

TABLE I
TEST DATA ELEMENTS HANDLED BY THE MODIFIED RULE

Test Data Src. Elements Dest. Elements
simple p1:Port p1:FlowPort

reshape.uml p2:Port p2:FlowPort

simple tiler.uml
p1:Port p1:FlowPort
p2:Port p2:FlowPort
p3:Port p3:FlowPort

simple data
p:Port p:FlowPort

allocation.uml
ex4simple- host variable host variable
malloc.uml kernel variable kernel variable

compound.uml
p1:Port p1:FlowPort
p2:Port p2:FlowPort

a new test model whose the result of the transformation by

the initial transformation contains at least one FlowPort with

a direction set to inout. A new test model is built by copying

the simple reshape.uml test model and modifying the direction

property of the p1:Port or the p2:Port to inout.

In order to check the efficiency of the new test, the mutation

analysis process is performed once again. 33 test models are

taken into account. The studied mutant is henceforth killed

and the mutation analysis process goes on with another live

mutant.

The modifications to perform on the test model to create a

new one are not so easy than the one of the above example.

However, this example illustrates how the information gath-

ered thanks to our algorithm can be used to raise the quality

of a test model set.

B. Quantitative Study

This section aims to show that our approach enables the

tester to save a considerable amount of time and that the execu-

tion time remains largely acceptable whereas 1120 executions

are performed and so many results analyzed. For this purpose,

we perform different benchmarks corresponding to 5, 15 and

32 test models, respectively.

Identification of the live mutants. The number of mutants

remains 35 in the three benchmarks, only the number of test

models and thus also the number of cells to explore vary.

The identification of the live mutants uses only the mutation

matrix model that in our implementation is loaded once. The

loading time is relatively short and approximates 1 second.

The operations performed to identify the live mutants are

only navigations that are quite instantaneous. The observed

execution times are lower than 1 second for each benchmark.

Execution of the algorithm 1 for one live mutant.

Once again three benchmarks with respectively 5, 15 and

32 test models are performed. The algorithm identifies the

models, input elements and output elements impacted by the

application of the faulty rule in respectively, 42 seconds, 1

minute 30 seconds and 3 minutes 45 seconds (Table II). These

measures depend on the size of the models but reasonably

sketches the variation of the time execution with the number

of test models. With 32 test models, the observed time is

acceptable and remains largely inferior to the time spent to

manually collect the information. The execution time mostly

5

TABLE II
IDENTIFIED MODELS FOR EACH TEST MODELS SET

Test set size
Number of Execution

identified models time
5 1 42”
15 2 1’30”
32 5 3’45”

corresponds to the model loading time since other executions

once again only concern quasi instantaneous navigations. This

loading time increase with the complexity of the model and

the metamodel. It is even more predominant for UML models

enhanced with profiles than for classical EMF models. For

each benchmark, Table II also indicates the number of test

models for which the faulty rule is executed. Naturally, the

number of identified models raises with the size of the test

model set.

The execution time to collect the information associated to

one mutant linearly raises with the number of test models. Our

approach has to be tested with hundreds test models and the

execution time measured. However, the quantitative analysis is

really promising concerning the scalability of our algorithm.

V. RELATED WORK

There are different ways to obtain a qualified test data

set. Since model transformation testing has only been briefly

studied, few works consider test models qualification and

improvement.

Fleurey et al. [14] propose to qualify a set of test models

regarding its coverage of the input domain. The input domain

is defined with metamodels and constraints. The qualifica-

tion is static and only based on the input domain whereas

the mutation analysis relies on a dynamic analysis of the

transformation. In case of very localized transformations, the

approach developed by Fleurey et al. produces more models

than necessary.

However, in [15], they also propose an adaptation of bacte-

riologic algorithm to model transformation testing. The bacte-

riologic algorithm [16] is designed to automatically improve

the quality of a test data set. It measures the mutation score of

each data to (1) reject useless test data, (2) keep the best test

data, (3) “combine” the latter to create new test data. Their

adaptation consists in creating new test models by covering

part of the input domain still not covered. The authors use the

bacteriologic algorithm to select models whereas we propose

the mutation analysis associated to trace mechanisms.

In [17], authors study how to use traceability in test driven

development (TDD). TDD involves writing the tests prior to

the development of the system. Here, traceability can be used

to help the creation of new tests considering how the system

covers the requirements. The trace links the requirement and

the code, and helps the developer to choose the next features

which should be tested, then coded. In that approach they do

not consider the fault revealing power of the test data set, but

the coverage of the requirements to assist the creation of test

data.

VI. CONCLUSION

As any other program, it is important to test model trans-

formations. For this purpose, test data set has to be qualified.

Mutation analysis is an existing approach that has already been

approved and adapted to model transformations. In this paper,

we focus on the test model set improvement step and propose

a traceability mechanism. This mechanism completely adopts

the model paradigm and relies on a local trace metamodel

and a matrix metamodel. An algorithm has been developed to

assist in the analysis of the execution results for each couple

(mutant, test model). This approach has been illustrated on a

real case study; the UML to MARTE transformation of the

Gaspard framework.

This approach clearly helps to statically analyze the execu-

tion results. However, modifying existing models to create a

new one, that kills a live mutant, remains manually performed.

We are currently designing operator metamodels and conse-

quently adapting the creation of new test models. With these

in progress works and the approach presented in this paper, we

are going towards a full automation of the mutation analysis

process.

REFERENCES

[1] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system,” Softw. Test. Verif. Reliab., vol. 15, no. 2, 2005.

[2] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, 1978.

[3] J. M. Voas and K. W. Miller, “The revealing power of a test case,” Softw.
Test., Verif. Reliab., vol. 2, no. 1, pp. 25–42, 1992.

[4] T. Murmane, K. Reed, T. Assoc, and V. Carlton, “On the effectiveness
of mutation analysis as a black box testing technique,” in Software

Engineering Conference, 2001, pp. 12–20.
[5] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Mutation analysis testing for

model transformations,” in ECMDA 06, Spain, Jul. 2006.
[6] A. J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible

path problem,” Software Testing, Verification and Reliability, vol. 7,
1997.

[7] S. Sen, B. Baudry, and J.-M. Mottu, “On combining multi-formalism
knowledge to select models for model transformation testing,” in ICST.,
Norway, Apr. 2008.

[8] “EMFcompare,” www.eclipse.org/emft/projects/compare.
[9] IEEE, IEEE standard computer dictionary : a compilation of IEEE

standard computer glossaries. New York, NY, USA: IEEE Computer
Society Press, 1991.

[10] F. Glitia, A. Etien, and C. Dumoulin, “Traceability for an MDE
Approach of Embedded System Conception,” in ECMDA Traceability

Workshop, Germany, 2008.
[11] V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser, “Traceability

mechanism for error localization in model transformation,” in ICSOFT,
Bulgaria, July 2009.

[12] Object Management Group, “A UML profile for MARTE,” 2007,
http://www.omgmarte.org.

[13] A. Gamatié, S. Le Beux, E. Piel, R. Ben Atitallah, A. Etien, P. Marquet,
and J. Dekeyser, “A model driven design framework for massively par-
allel embedded systems,” ACM Transactions on Embedded Computing

Systems (TECS), 2010, accepted for publication.
[14] F. Fleurey, B. Baudry, P.-A. Muller, and Y. Le Traon, “Towards depend-

able model transformations: Qualifying input test data,” SoSyM Journal,
2007.

[15] F. Fleurey, J. Steel, and B. Baudry, “Validation in model-driven engi-
neering: testing model transformations,” in MoDeVVa, 2004.

[16] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, “From genetic
to bacteriological algorithms for mutation-based testing,” STVR Journal,
vol. 15, no. 2, pp. 73–96, Jun. 2005.

[17] J. H. Hayes, A. Dekhtyar, and D. S. Janzen, “Towards traceable test-
driven development,” in TEFSE Workshop. USA: IEEE Computer
Society, 2009, pp. 26–30.

6

